Saturday, April 8, 2023

Monolithic 3D ICs

True monolithic 3D ICs are built in layers on a single semiconductor wafer, which is then diced into 3D ICs. There is only one substrate, hence no need for aligning, thinning, bonding, or through-silicon vias. In general, monolithic 3D ICs are still a developing technology and are considered by most to be several years away from production.

Process temperature limitations can be addressed by partitioning the transistor fabrication into two phases. A high temperature phase which is done before layer transfer followed by a layer transfer using ion-cut, also known as layer transfer, which has been used to produce Silicon on Insulator (SOI) wafers for the past two decades. Multiple thin (10s–100s nanometer scale) layers of virtually defect-free Silicon can be created by utilizing low temperature (<400℃) bond and cleave techniques, and placed on top of active transistor circuitry. Follow by finalizing the transistors using etch and deposition processes. This monolithic 3D IC technology has been researched at Stanford University under a DARPA-sponsored grant. m CEA-Leti also developed monolithic 3D IC approaches, called sequential 3D IC. In 2014, the French research institute introduced its CoolCube™, a low-temperature process flow that provides a true path to 3DVLSI.[8]

At Stanford University, researchers designed monolithic 3D ICs using carbon nanotube (CNT) structures vs. silicon using a wafer-scale low temperature CNT transfer processes that can be done at 120℃.[9]

Manufacturing technologies for 3D SiCs[edit]

There are several methods for 3D IC design, including recrystallization and wafer bonding methods. There are two major types of wafer bonding, Cu-Cu connections (copper-to-copper connections between stacked ICs, used in TSVs)[10][11] and through-silicon via (TSV). As of 2014, a number of memory products such as High Bandwidth Memory (HBM) and the Hybrid Memory Cube have been launched that implement 3D IC stacking with TSVs. There are a number of key stacking approaches being implemented and explored. These include die-to-die, die-to-wafer, and wafer-to-wafer.

Die-to-Die
Electronic components are built on multiple die, which are then aligned and bonded. Thinning and TSV creation may be done before or after bonding. One advantage of die-to-die is that each component die can be tested first, so that one bad die does not ruin an entire stack.[12] Moreover, each die in the 3D IC can be binned beforehand, so that they can be mixed and matched to optimize power consumption and performance (e.g. matching multiple dice from the low power process corner for a mobile application).
Die-to-Wafer
Electronic components are built on two semiconductor wafers. One wafer is diced; the singulated dice are aligned and bonded onto die sites of the second wafer. As in the wafer-on-wafer method, thinning and TSV creation are performed either before or after bonding. Additional die may be added to the stacks before dicing.[13]
Wafer-to-Wafer
Electronic components are built on two or more semiconductor wafers, which are then aligned, bonded, and diced into 3D ICs. Each wafer may be thinned before or after bonding. Vertical connections are either built into the wafers before bonding or else created in the stack after bonding. These "through-silicon vias" (TSVs) pass through the silicon substrate(s) between active layers and/or between an active layer and an external bond pad. Wafer-to-wafer bonding can reduce yields, since if any 1 of N chips in a 3D IC are defective, the entire 3D IC will be defective. Moreover, the wafers must be the same size, but many exotic materials (e.g. III-Vs) are manufactured on much smaller wafers than CMOS logic or DRAM (typically 300 mm), complicating heterogeneous integration.

Benefits[edit]

While traditional CMOS scaling processes improves signal propagation speed, scaling from current manufacturing and chip-design technologies is becoming more difficult and costly, in part because of power-density constraints, and in part because interconnects do not become faster while transistors do.[14] 3D ICs address the scaling challenge by stacking 2D dies and connecting them in the 3rd dimension. This promises to speed up communication between layered chips, compared to planar layout.[15] 3D ICs promise many significant benefits, including:

Footprint
More functionality fits into a small space. This extends Moore's law and enables a new generation of tiny but powerful devices.
Cost
Partitioning a large chip into multiple smaller dies with 3D stacking can improve the yield and reduce the fabrication cost if individual dies are tested separately.[16][17]
Heterogeneous integration
Circuit layers can be built with different processes, or even on different types of wafers. This means that components can be optimized to a much greater degree than if they were built together on a single wafer. Moreover, components with incompatible manufacturing could be combined in a single 3D IC.[18][3]

--
You received this message because you are subscribed to the Google Groups "1TopReadys1" group.
To unsubscribe from this group and stop receiving emails from it, send an email to 1topreadys1+unsubscribe@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/1topreadys1/CAForgrQbsa6knS8UaVDf9wcJppxAqBkJYeRZ-i06YQEdxkasnA%40mail.gmail.com.

No comments:

Post a Comment